Missing feature theory with soft spectral subtraction for speaker verification
نویسندگان
چکیده
This paper considers the problem of training/testing mismatch in the context of speaker verification and, in particular, explores the application of missing feature theory in the case of additive white Gaussian noise corruption in testing. Missing feature theory allows for corrupted features to be removed from scoring, the initial step of which is the detection of these features. One method of detection, employing spectral subtraction, is studied in a controlled manner and it is shown that with missing feature compensation the resulting verification performance is improved as long as a minimum number of features remain. Finally, a blending of “soft” spectral subtraction for noise mitigation and missing feature compensation is presented. The resulting performance improves on the constituent techniques alone, reducing the equal error rate by about 15% over an SNR range of 5 25 dB.
منابع مشابه
Applications of Missing Feature Theory to Speaker Recognition
An important problem in speaker recognition is the degradation that occurs when speaker models trained with speech from one type of channel are used to score speech from another type of channel, known as channel mismatch. This thesis investigates various channel compensation techniques and approaches from missing feature theory for improving Gaussian mixture model (GMM)-based speaker verificati...
متن کاملSpeaker verification in noisy environments with combined spectral subtraction and missing feature theory
In the framework of Gaussian mixture models (GMMs) [1], we present a new approach towards robust automatic speaker verification (SV) in adverse conditions. This new and simple approach is based on the combination of a speech enhancement using traditional spectral subtraction, and a missing feature compensation to dynamically modify the probability computations performed in GMM recognizers. The ...
متن کاملA comparison of soft and hard spectral subtraction for speaker verification
An important concern in speaker recognition is the performance degradation that occurs when speaker models trained with speech from one type of channel are subsequently used to score speech from another type of channel, known as channel mismatch. This paper investigates the relative performance of two different spectral subtraction methods for additive noise compensation in the context of speak...
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملText-Independent Speaker Verification for Real Fast-Varying Noisy Environments
Investigating Speaker Verification in real-world noisy environments, a novel feature extraction process suitable for suppression of time-varying noise is compared with a fine-tuned spectral subtraction method. The proposed feature extraction process is based on approximating the clean speech and the noise spectral magnitude with a mixture of Gaussian probability density functions (pdfs) by usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006